Switching effects

in transition metal oxides

1 opinia

Format:

epub, mobi, ibuk

DODAJ DO ABONAMENTU

WYBIERZ RODZAJ DOSTĘPU

197,20  290,00

Format: epub, mobi

 

Dostęp online przez myIBUK

WYBIERZ DŁUGOŚĆ DOSTĘPU

Cena początkowa: 290,00 zł (-32%)

Najniższa cena z 30 dni: 197,20 zł  


197,20

w tym VAT

TA KSIĄŻKA JEST W ABONAMENCIE

Już od 24,90 zł miesięcznie za 5 ebooków!

WYBIERZ SWÓJ ABONAMENT

The oxides, especially the transition metal oxides, are a most important class of inorganic materials, being enormously interesting for basic research in solid-state physics, surface physics, defect chemistry, electrochemistry, and catalysis, to mention a few. Moreover, the practical application of these materials each year increases tremendously. This ranges from nano-electronics as the main component of resistive switching devices in neuronal networks, micro-electro-mechanical systems known as MEMS, and in ultrasonic transducers with outputs of many kilowatts, to catalysis in industrial processes. This book is a kind of breakthrough in the analysis of the variability of the physical and chemical properties of transition metal oxides. The intention of the authors is not only to link switching to the influence of different macroscopic stimuli on order parameters in ferroics such as spontaneous polarization, spontaneous strain or magnetization, but to show that switching originates at the nanoscale and can be treated as a low-size phenomenon. That is why this book presents surface sensitive methods such as LCAFM, PFM, KPFM, by means of which switching processes are investigated at the nanoscale. In particular, the transport phenomena along filaments inside oxides are described in detail and analyzed through resistive switching mechanisms from the semiconducting to the metallic state.


Rok wydania2021
Liczba stron500
KategoriaInne
WydawcaWydawnictwo Naukowe PWN
ISBN-13978-83-01-21695-5
Numer wydania1
Język publikacjipolski
Informacja o sprzedawcyePWN sp. z o.o.

Ciekawe propozycje

Spis treści

  Introduction     11
  1. An Introduction to the Crystal Structures of Oxide Perovskites    13
    1.1. Atomic Displacements     15
    1.2. Octahedral Tilting    23
    1.3. Distortion Modes    25
  References    28
  2. Growth of ABO3 and BO2 Crystals     30
    2.1. Theory of Crystal Growth     30
      2.1.1. Equilibrium Conditions     30
    2.2. Phase Diagrams of Model Oxides. Major Challenges in Crystal Growth of Stoichiometric Oxide Crystals    33
      2.2.1. Gibbs Phase Rule     33
      2.2.2. Phase Diagrams     34
      2.2.3. Nonstoichiometric Oxides     34
    2.3. Techniques of Growth of Selected Binary and Ternary Oxide Crystals    35
    2.4. Typical Methods for Evaluation of Quality of Oxide Crystals     40
      2.4.1. Stoichiometric TiO2    41
      2.4.2. Perovskite Structure    41
  References    46
  3. Defect Chemistry in Binary and Ternary Metal Oxides     51
    3.1. Introduction     51
    3.2. Imperfect Crystals    52
    3.3. Quasi-chemical Defect Reactions     53
    3.4. Types of Point Defects     54
    3.5. Thermodynamic Approach     54
    3.6. Nonstoichiometry    57
    3.7. Aggregations of Point Defects and Extended Defects    58
    3.8. Ideal Point Defect Model     61
      3.8.1. Case of Ni1–yO     61
      3.8.2. Case of BaTiO3–y     64
      3.8.3. Case of Zirconia-based Materials    67
      3.8.4. Defect Structure of YSZ     72
    3.9. Debye-Hückel Defect Model    73
      3.9.1. Co1–yO Case    73
    3.10. Cluster Model     77
      3.10.1. Defect Clustering in the Wustite Phase     77
    3.11. Crystallographic Shearing     80
    3.12. Defect Structure of Titanium Dioxide     81
      3.12.1. Extended Defects in TiO2     85
    3.13. Hydrogen Defects    86
  Acknowledgements     87
  References    87
  4. Self-Polarization of Ferroelectric Thin Films and Its Influence on the Film Properties    92
    4.1. Introduction     93
    4.2. Free Energy Functional    94
    4.3. Renormalized Free Energy and Properties for One Component Polarization P = PZ    96
    4.4. The Influence of Built-in Electric Field on the Properties of Ferroelectric Thin Films for the Case P = PZ     99
    4.5. Phase Diagrams with Electret State and Properties for the Case of Three Polarization Components     103
    4.6. Comparison with Experiment and Summary of Sec. 5 Results     114
  Conclusion    117
  References    118
  5. Lattice Dynamics of Perovskite Oxides     120
    5.1. Introduction     120
    5.2. Early Attempts to Model Ferroelectric Perovskites    121
    5.3. Polarizability Effects in Perovskites     124
    5.4. The Polarizability Model for Perovskites    126
    5.5. Applications of the Model     131
    5.6. Precursor Effects to the Phase Transitions    137
  Conclusions    146
  References    147
  6. Metrology and Measurement Techniques 151
    6.1. Electrical Properties of Nanoscale Solids    151
      6.1.1. Measurement of Electrical and Magnetic Material Properties    152
      6.1.2. The Piezoelectric Effect     163
    6.2. Design of Measurement Setups     166
      6.2.1. General Considerations     166
      6.2.2. Active Amplifier Circuits     169
      6.2.3. Measurement Methods for Ferroelectric Properties     172
      6.2.4. Laser Interferometers    183
  References     188
  7. Multiferroics 190
    7.1. Abstract    190
    7.2. Introduction     190
    7.3. A Brief History of Magnetoelectrics and Multiferroics     191
    7.4. Symmetries and Orderings in Multiferroics     192
    7.5. Theory of Magnetoelectric Coupling in Multiferroics    193
    7.6. Magnetoelectric Multiferroics    200
  Acknowledgements     218
  References    218
  8. Electronic Correlations and Metal-Insulator Transitions     223
    8.1. Introduction: The Meaning of Localization – Delocalization
  Transitions in Solids with Examples     223
      8.1.1. Crystallization of Liquid 3He as Mott-Hubbard Transition    223
      8.1.2. Localization-Delocalization Transition of Ultracold Atoms     225
      8.1.3. Metal-Insulator Transition in Doped V2O3    226
    8.2. Elementary Approach to the Metal-Insulator (Mott-Hubbard) Transitions     228
      8.2.1. Normal metal as a Landau Fermi liquid: basic characteristics     228
      8.2.2. Mott-Wigner Criterion of Localization     230
      8.2.3. 8.2.3 Localization on the Lattice: Hubbard Model     232
      8.2.4. Quantitative Discussion of the Metal-Insulator Transition    233
      8.2.5. Quasiparticle Representation of Correlated-Electron System and the Phase Diagram     236
      8.2.6. Mott-Hubbard Localization in Correlated Nanoscopic Systems    241
    8.3. Concluding Remarks     244
  Acknowledgment     244
  References    244
  9. Nature of the Insulator-Metal Transition in Transition Metal Oxides Induced by Chemical Defects – Deviation from Stoichiometry and Electrochemical Alkaline Intercalation     245
    9.1. Insulator-Metal Transition in Transition Metal Oxides Induced by Deviation from Stoichiometry     247
    9.2. Insulator-Metal Transition in Transition Metal Oxides Induced by Electrochemical Alkaline Intercalation/Deintercalation    272
      9.2.1. LixCoO2     276
      9.2.2. NaxCoO2-y    285
  Acknowledgements     295
  References    296
  10. Structural Transformation of the SrTiO3 Surface Region due to Electric Fields at Ambient Temperature 299
    10.1. Modifications and Equilibrium of the SrTiO3 Structure    300
      10.1.1. Compositional Changes: the Quasi-binary System SrO–TiO2    300
      10.1.2. Stability of SrO(SrTiO3)n Ruddlesden-Popper Phases     303
      10.1.3. A Look at Symmetry and Property Tensors    304
      10.1.4. Chemical Modifications Beyond the Ternary Composition     306
    10.2. Electric-field Induced Ionic Transport and Anisotropy in SrTiO3    307
      10.2.1. Electroformation     308
      10.2.2. Redistribution of Ionic Species    310
    10.3. Evidence for Structural Transformations and Related Models     312
      10.3.1. Structural Transitions due to Application of an Electric Field     312
      10.3.2. The Occurence of Ruddlesden-Popper Phases     313
      10.3.3. The Migration-Induced Field-Stabilized Polar (MFP) Phase     314
    10.4. Modification of SrTiO3 Properties and Related Applications     317
      10.4.1. Oxygen Vacancies and Conductivity     318
      10.4.2. Mechanical Properties    319
      10.4.3. Magnetism    321
      10.4.4. Pyroelectricity     321
      10.4.5. Piezoelectricity     323
      10.4.6. Resistive Switching    325
      10.4.7. All-Solid-State All-in-One Battery     326
      10.4.8. Further Applications    326
    10.5. Conclusion     327
  Acknowledgment     328
  References    329
  11. Chemical Transformation of SrTiO3 Surface Region Exposed to High Temperature and Other Factors     336
    11.1. Introduction     336
    11.2. Investigated Crystals     339
    11.3. Possible Surface Reconstructions of STO    340
    11.4. Methods of Surface Studies    341
    11.5. Thermal Treatment    341
    11.6. Surface Modification upon Vacuum and Exposure to X-Rays and Electron Beam    348
    11.7. Ion Sputtering     351
    11.8. Deposition of Metals     354
    11.9. Mechanical Stress and Defects    355
  Summary     356
  References     357
  12. Chemical Transformation of TiO2 Surface Region Exposed to High Temperature and Different Chemical Activity of Oxygen    359
  Acknowledgements     375
  References    375
  13. From Electroformation to Resistive Switching in Single Crystals of Strontium Titanate: How SrTiO3 Can Be Transformed into a Metallic State Using Electrical Stimuli     378
    13.1. Introduction     378
    13.2. Resistive Switching – General Information     381
    13.3. Some Theoretical Considerations     386
      13.3.1. Methods for the Calculation of the Electronic Structure    388
      13.3.2. Trends Observed from DFT Calculations     393
    13.4. Electroforming of Non-conducting (Insulating) SrTiO3 Crystals     394
      13.4.1. Electrical Characterization During Electroformation     394
      13.4.2. Oxygen Evolution During Electroformation    399
      13.4.3. Spatial Inhomogeneity of the Electroformation Process and Filamentary Structures     402
    13.5. Model    410
  References    417
  14. Crystallographic Structure, Electronic Structure, and Chemical Composition on the Nanoscale: Important Role of the SPM, LEED, Photoemission Investigations for the Analysis of the Crystal Geometry, Electronic Structure and Diffusion Phenomena on the Surface of Model Oxides     420
  Acknowledgements     437
  References    437
  15. Investigations of Local Thermal Properties by SThM Microscopy    439
    15.1. Scanning Thermal Microscopy: Principle, Equipment, Operation Modes    440
    15.2. Thermal Imaging: Temperature and Conductivity Contrast Measurements     445
    15.3. Quantitative Thermal Measurements with SThM Equipment – Potentialities and Limitations    448
    15.4. Methods for Improvements of Sensitivity and Stability of Thermal Measurements Using Batch Fabricated Thermal Probes    453
    15.5. Determination of the Thermal Conductivity of Submicron Layers on Thick Substrates     458
    15.6. Application of Qualitative and Quantitative SThM Measurements in Investigation of Perovskites (Thin Films, Bicrystals)    460
  Acknowledgements     462
  References    463
  16. Studying the Local Redox Processes on Transition Metal Oxides Surfaces Using Kelvin Probe Force Microscopy     466
    16.1. Introduction     466
    16.2. Principles of Kelvin Probe Force Microscopy     468
      16.2.1. Basics of KPFM Operation     468
      16.2.2. Forces in Atomic Force Microscopy     469
      16.2.3. Technical Realization of KPFM    472
      16.2.4. Limits of Resolutions in KPFM    474
    16.3. Local Surface Potential of Oxide Metal Surfaces upon Reduction and Oxidation Processes     478
      16.3.1. Titanium Dioxide TiO2(110) Surface     478
      16.3.2. Strontium Titanate SrTiO3(100) Surface     484
    16.4. Summary     491
  Acknowledgements     492
  References    492
RozwińZwiń