Fundamentals of designing hydraulic gear machines

1 opinia

Format:

epub, mobi, ibuk

DODAJ DO ABONAMENTU

WYBIERZ RODZAJ DOSTĘPU

89,40  149,00

Format: epub, mobi

 

Dostęp online przez myIBUK

WYBIERZ DŁUGOŚĆ DOSTĘPU

Cena początkowa: 149,00 zł (-40%)

Najniższa cena z 30 dni: 101,32 zł (-12%)  


89,40

w tym VAT

TA KSIĄŻKA JEST W ABONAMENCIE

Już od 24,90 zł miesięcznie za 5 ebooków!

WYBIERZ SWÓJ ABONAMENT

Hydraulic gear machines (HGM) are a type of machines applied in the hydraulic drive and control systems where gears are the main unit both in terms of the design and operation principle. HGMs are utilized for converting mechanical energy into hydraulic energy or vice versa. In the former case, the machines are pumps, and in the latter, hydraulic motors.
The author has been dealing with HGMs for over 40 years, first individually, and for the last several years, as a member of the Fluid Power Research Group constituted at the Mechanical Engineering Department of Wroclaw University of Science and Technology, Poland.


Rok wydania2020
Liczba stron352
KategoriaAutomatyka i robotyka
WydawcaWydawnictwo Naukowe PWN
ISBN-13978-83-01-21145-5
Numer wydania1
Język publikacjiangielski
Informacja o sprzedawcyePWN sp. z o.o.

Ciekawe propozycje

Spis treści

  Preface 11
  1. Definition, systematics and methodology of designing hydraulic gear machines 13
    1.1. Definition and systematics    13
    1.2. Designing methodology     15
  2. The process of energy transformation in hydraulic gear machines 20
    2.1. General models of a pump and a motor    20
      2.1.1. General model of a pump     20
      2.1.2. General model of a motor     21
    2.2. Ideal and real characteristics of a pump and a motor    24
      2.2.1. Characteristics of a pump     24
      2.2.2. Characteristics of a motor     28
    2.3. Conclusions    32
  3. Gears in hydraulic gear machines 33
    3.1. Teeth, gears and the external involute gear systems    34
      3.1.1. The tooth, the external gear     34
      3.1.2. The boundary number of teeth, correction of the external tooth    38
      3.1.3. The external involute gear system    40
        3.1.3.1. The uncorrected gear system, the principle of co-operation, t e number of contact    40
        3.1.3.2. The corrected gear system, the principle of co-operation, the number of contact    42
    3.2. Teeth, gears and the internal involute gear systems    45
      3.2.1. The tooth, the internal gear     45
      3.2.2. The boundary number of teeth, correction of the internal tooth    47
      3.2.3. The internal involute gear system    48
        3.2.3.1. The uncorrected gear system, the principle of co-operation, the number of contact    48
        3.2.3.2. The corrected gear system, the principle of co-operation, the number of contact    50
        3.2.3.3. Interference of the gear teeth    52
    3.3. Teeth, gears and the internal cycloidal gear systems    54
      3.3.1. Teeth, gears and the uncorrected internal epicycloidal gear system    54
      3.3.2. Teeth, gears and the corrected internal epicycloidal gear system    59
      3.3.3. Principle of co-operation in the epicycloidal gear system, the line of contact, the number of contact     61
      3.3.4. Teeth, gears and the uncorrected internal hypocycloidal gear system     64
      3.3.5. Teeth, gears and the corrected internal hypocycloidal gear system    67
      3.3.6. Principle of co-operation in the hypocycloidal gear system, the line of contact, the number of contact     69
      3.3.7. Principle of co-operation in the cycloidal gear system with moveable axes    71
      3.3.8. Principle of co-operation in the cycloidal multi-gear systems    74
    3.4. Conclusions     75
  4. Channels and clearances in the fluid power gear machines    78
    4.1. The system of fixed channels and clearances    78
    4.2. The system of moveable channels and clearances    80
    4.3. The system of channels and clearances in the machines of the first group     81
      4.3.1. Inlet channel and inlet chamber    82
      4.3.2. Inlet bridge     83
      4.3.3. Outlet channel and outlet chamber    85
      4.3.4. Outlet bridge     86
      4.3.5. Axial and radial clearance     103
    4.4. The system of channels and clearances in the machines of the second group     105
      4.4.1. Inlet channel and inlet chamber    105
      4.4.2. Inlet bridge     108
      4.4.3. Outlet channel and outlet chamber    109
      4.4.4. Outlet bridge     110
      4.4.5. Axial and radial clearance     118
    4.5. The system of channels and clearances in the machines of the third group    120
      4.5.1. Inlet channel and inlet chamber    121
      4.5.2. Inlet bridge     122
      4.5.3. Outlet channel and outlet chamber    124
      4.5.4. Outlet bridge     125
      4.5.5. Axial and radial clearance     132
    4.6. The system of channels and clearances in the machines of the fourth group    134
      4.6.1. The system of channels and clearances in the multifunctional hydraulic gear machine (MHGM)    134
      4.6.2. The system of channels and clearances in the ORBIT orbital motor    137
      4.6.3. The system of channels and clearances in the MAX orbital motor with double cycloidal gearing    140
    4.7. Conclusions    142
  5. Delivery and delivery pulsation, capacity and capacity pulsation of the fluid power gear machines     144
    5.1. General formulae     145
      5.1.1. Instantaneous delivery     145
      5.1.2. The proper, theoretical and average delivery    152
      5.1.3. Delivery pulsation    154
    5.2. Delivery and delivery pulsation in the machines of the first group    154
    5.3. Delivery and delivery pulsation in the machines of the second group    160
    5.4. Delivery and delivery pulsation in the machines of the third group    163
      5.4.1. Epicycloidal gear machines    165
      5.4.2. Hypocycloidal gear machines    172
    5.5. Delivery of the machines of the fourth group     179
    5.6. Conclusions    181
  6. Pressure and pressure pulsation in the fluid power gear machines 182
    6.1. Theoretical characteristics of the pressure and pressure pulsation changes in the intertooth displacement chamber T in the machines od the first-third group    184
    6.2. Theoretical characteristics of the pressure and pressure pulsation changes in the intertooth displacement chamber in the machines of the fourth group    191
    6.3. Conclusions    193
  7. The visual study of the flow processes and phenomena taking place in the channels and clearances of the gear machines    195
    7.1. General comments     195
    7.2. The subject and methodology of the visual study; the test stand    195
    7.3. The visual study of the machines of the first group    199
      7.3.1. Inlet channel and inlet chamber    202
      7.3.2. Inlet bridge     204
      7.3.3. Outlet channel and outlet chamber    206
      7.3.4. Outlet bridge     207
      7.3.5. Relief grooves in the outlet bridge zone    212
      7.3.6. Axial clearance     216
    7.4. The visual study of the machines of the second group    217
      7.4.1. Inlet channel and inlet chamber    219
      7.4.2. Inlet bridge     221
      7.4.3. Outlet channel and outlet chamber    222
      7.4.4. Outlet bridge     223
    7.5. The visual study of the machines of third group    226
      7.5.1. Inlet channel and inlet chamber    228
      7.5.2. Inlet bridge     230
      7.5.3. Outlet channel and outlet chamber    235
      7.5.4. Outlet bridge     236
    7.6. Conclusions    238
  8. Pressure study in the channels and clearances of the gear machines    241
    8.1. The subject and methodology of the study; the test stand    241
    8.2. Study of the pressure in the channels and clearances of the machines of the first group    242
      8.2.1. Study of gear pump I without axial clearance compensation    242
      8.2.2. Study of gear pump II with axial clearance compensation     251
    8.3. Study of the pressure in the channels and clearances of the machines of the second and third group     258
    8.4. Conclusions    271
  9. Designing the housings of the fluid power gear machines    273
    9.1. Methodology of designing the housings of the fluid power gear machines    273
    9.2. Determining the design and technological requirements for the housings of the pumps     274
    9.3. Determining the basic shape of the pumps    275
    9.4. Strength analysis of the housings of the basic shape gear pumps with the use of FEM    278
      9.4.1. Geometrical models, load and fixation    278
      9.4.2. Numerical models, research programme    280
      9.4.3. Results of the strength analysis of the basic shape pump housings    282
    9.5. Global and local modification of the basic shape housing    285
    9.6. Strength analysis of the housings of the modified shape gear pumps with the use of FEM     287
    9.7. Assumption of the final shape of the pumps    288
    9.8. Conclusions    289
  10. Designing the axial clearances compensation system     291
    10.1. Principle of axial clearance compensation. Methodology of designing the axial clearance compensation system    291
    10.2. Designing the axial clearance compensation system in the machines of the first group    293
      10.2.1. Assumption of a design solution for the compensation system    293
      10.2.2. Defining area Ap of the pressure working in the axial clearance, and the division of the area into partial areas Api    294
      10.2.3. Defining the distribution of partial pressure pi working on partial areas Api     296
      10.2.4. Defining partial repulsive forces Fpi and the total repulsive force Fp    298
      10.2.5. Defining partial torques of the repulsive forces Mpi and total torque of the repulsive forces Mp    299
      10.2.6. Defining points of application xpi, ypi of partial repulsive forces Fpi and point of application xp, yp of total repulsive force Fp    305
      10.2.7. Shaping total compensation area Ac and its division into partial areas Aci. Determining of compensation pressure pc    305
      10.2.8. Defining partial compensation forces Fci and total compensation force Fc    308
      10.2.9. Defining coordinates xci, yci of the points of application of partial compensation forces Fci and coordinates xc, yc of the points of application of total compensation force Fc     308
      10.2.10. Comparison of total repulsive force Fp and its point of application xp, yp with total compensation force Fc and the point of its application xc, yc    310
    10.3. Designing the axial clearance compensation system in the machines of thesecond group    311
      10.3.1. Assumption of a design solution for the compensation system    311
      10.3.2. Defining partial repulsive forces Fpi and total repulsive force Fp    312
      10.3.3. Defining points of application xpi, ypi of partial repulsive forces Fpi and point of application xc, yc of total repulsive force Fp    316
      10.3.4. Shaping the total compensation area Ac and its division into partial areas Aci. Determining of compensation pressure pc    319
      10.3.5. Defining partial compensation forces Fci and coordinates xci, yci of the points of its application and total compensation force Fc and coordinates xc, yc of the point of its application    321
      10.3.6. Comparison of total repulsive force Fp and its point of application xp, yp with total compensation force Fc and the point of its application xc, yc     322
    10.4. Designing the axial clearance compensation system in the machines of the third group    324
    10.5. Designing the axial clearance compensation system in the machines of the fourth group    326
    10.6. Conclusions    330
  11. Design solutions of fluid power gear machines    332
  References     346
RozwińZwiń