Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroenergetycznych

Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroenergetycznych

1 opinia

Format:

ibuk

WYBIERZ RODZAJ DOSTĘPU

 

Dostęp online przez myIBUK

WYBIERZ DŁUGOŚĆ DOSTĘPU

6,15

Wypożycz na 24h i opłać sms-em

30,00

cena zawiera podatek VAT

ZAPŁAĆ SMS-EM

W monografii przedstawiono modele prognostyczne wykorzystujące metody uczenia maszynowego, rozpoznawania obrazów i inteligencji obliczeniowej do sporządzania krótkoterminowych prognoz obciążeń systemów elektroenergetycznych. Wspólną cechą tych modeli jest uczenie się na podstawie danych i wykorzystanie podobieństw obrazów cykli sezonowych szeregów czasowych obciążeń. Szeregi te są niestacjonarne, heteroskedastyczne, wykazują trend, wiele cykli wahań sezonowych oraz zakłócenia losowe. Nowe podejście oparte na podobieństwie obrazów i lokalnej regresji nieparametrycznej upraszcza problem prognostyczny i umożliwia konstrukcję efektywnych modeli prognostycznych. Modele to opierają się następującym założeniu: jeżeli obrazy cykli sezonowych szeregu czasowego są do siebie podobne (obrazy wejściowe), to obrazy cykli następujących po nich (obrazy prognoz) również są do siebie podobne. Założenie to pozwala budować modele prognostyczne wykorzystujące analogie pomiędzy powtarzającymi się fragmentami szeregu czasowego z wahaniami sezonowymi.


Liczba stron250
WydawcaAkademicka Oficyna Wydawnicza EXIT Andrzej Lang
ISBN-13978-83-7837-508-1
Numer wydania1
Język publikacjipolski
Informacja o sprzedawcyRavelo Sp. z o.o.

Ciekawe propozycje

Spis treści

  Streszczenie
  Wykaz podstawowych oznaczeń i akronimów
  1. Wstęp
  
  1.1. Znaczenie prognozowania w elektroenergetyce
  1.2. Problemy krótkoterminowego prognozowania obciążeń systemów elektroenergetycznych
  1.3. Przedmiot badań
  1.4. Cel i teza pracy
  1.5. Zakres i układ pracy
  1.6. Cechy nowości pracy
  1.7. Podziękowania
  
  2. Przegląd metod prognozowania krótkoterminowego obciążeń systemów elektroenergetycznych
  
  2.1. Modele konwencjonalne
  2.2. Modele niekonwencjonalne
  
  3. Analiza szeregów czasowych obciążeń systemów elektroenergetycznych
  
  3.1. Analiza stacjonarności i homoskedastyczności
  3.2. Analiza wahań sezonowych
  3.3. Analiza dobowej zmienności obciążenia
  3.4. Identyfikacja obserwacji odstających
  3.5. Uzupełnianie brakujących danych
  
  4. Modele prognostyczne oparte na podobieństwie obrazów cykli sezonowych szeregów czasowych
  
  4.1. Obrazy cykli dobowych szeregów czasowych obciążeń systemów elektroenergetycznych
  4.2. Miary podobieństwa obrazów
  4.3. Analiza podobieństwa obrazów
  
  5. Modele prognostyczne jako systemy uczące się
  
  5.1. Systemy uczące się
  5.2. Konstrukcja modeli prognostycznych
  5.3. Optymalizacja i selekcja modeli
  5.4. Modele globalne i lokalne
  5.5. Ograniczenie wymiarowości problemu
  5.6. Badania symulacyjne
  
  6. Model oparty na estymatorach jądrowych
  
  6.1. Model JEFR
  6.2. Optymalizacja modelu JEFR
  6.3. Badania symulacyjne modelu JEFR
  
  7. Modele oparte na estymatorach najbliższego sąsiedztwa
  
  7.1. Modele K-NS i REFR
  7.2. Optymalizacja modeli K-NS i REFR
  7.3. Badania symulacyjne modeli K-NS i REFR
  
  8. Model oparty na sztucznych systemie immunologicznym SSI1
  
  8.1. Inspiracje biologiczne
  8.2. Model SSI1
  8.3. Dyskusja
  8.4. Badania symulacyjne modelu SSI1
  
  9. Modele oparte na grupowaniu obrazów
  
  9.1. Procedury prognostyczne
  9.2. Metody grupowania
  9.3. Badania symulacyjne modeli wykorzystujących grupowanie obrazów
  
  10. Ocena modeli prognostycznych w krótkoterminowym prognozowaniu obciążeń systemów elektroenergetycznych
  
  10.1. Analiza złożoności obliczeniowej algorytmów
  10.2. Ocena wrażliwości modeli na zmiany wartości parametrów
  10.3. Ocena odporności modeli na dane zakłócone
  10.4. Ocena odporności modeli na brakujące składowe wektora mocy
  10.5. Analiza statystyczna błędów prognoz
  10.6. Porównanie dokładności modeli prognostycznych
  10.7. Badania symulacyjne dla horyzontów czasowych do 7 dni
  10.8. Podsumowanie
  
  11. Podsumowanie
  Literatura
RozwińZwiń
W celu zapewnienia wysokiej jakości świadczonych przez nas usług, nasz portal internetowy wykorzystuje informacje przechowywane w przeglądarce internetowej w formie tzw. „cookies”. Poruszając się po naszej stronie internetowej wyrażasz zgodę na wykorzystywanie przez nas „cookies”. Informacje o przechowywaniu „cookies”, warunkach ich przechowywania i uzyskiwania dostępu do nich znajdują się w Regulaminie.

Nie pokazuj więcej tego powiadomienia