Towards the Modern Theory of Motion

Oxford Calculators and the new interpretation of Aristotle

1 opinia


pdf, ibuk



19,96  24,95

Format: pdf


Dostęp online przez myIBUK



Wypożycz na 24h i opłać sms-em.
Brak wydruku.


cena zawiera podatek VAT



Już od 19,90 zł miesięcznie za 5 ebooków!


The problem of the continuity of science from the medieval to the modern times of the 17th century, when Galileo and Newton developed the correct theory of mechanics, occupied historians of science from the beginning of the 20th century. Some believe that the fourteenth-century English scholars who created the School of Oxford Calculators and their French and Italian followers. with their solutions, laid the foundations for the development of modern physics. Others believe that medieval natural philosophy made no contribution to the development of modern science. The presented book is a voice in this discussion and an attempt to answer the question about the continuity of science. Considering how much has been discovered, edited and written about the Oxford Calculators, the book reviews and compares the results of our research with works of the other historians’ research into the intellectual heritage of these 14th century English thinkers in order to enrich and update the views on the Oxford Calculators’ natural philosophy in perhaps its most fundamental aspect – at least from the point of view of Aristotle’s philosophy – namely the subject of “science of local motion.”
The discussion are mostly focused on topics that were important to medieval thinkers and not those that could be most interesting from the modern point of view, and the research are directed on the Oxford Calculators’ tradition in science toward a prospecting of the innovative character of their teaching, and here first of all against the background of Aristotelian theories, and then the subsequent search for possible innovations which could have inspired early modern scientists.
As the conclusions of the research on the theories of Oxford calculators are still formulated mainly on the basis of analyzes of incomplete printed texts, the critical editions of Latin texts are offered. These are not only the most famous Calculators’ works, such as William Heytesbury’s De tribus praedicamentis: de motu locali or John Dumbleton’s Part III of the Summa logicae et philosophiae naturalis, but also of a hither to unknown work by Richard Kilvington, i.e., his question on local motion and the question on local motion written by the anonymous author of the treatise De sex inconvenientibus.

Liczba stron460
WydawcaWydawnictwo Uniwersytetu Łódzkiego
Numer wydania1
Język publikacjiangielski
Informacja o sprzedawcyePWN sp. z o.o.

Ciekawe propozycje

Spis treści

  Preface    7
  Chapter I: Lives and Works of Oxford Calculators (Elżbieta Jung)    11
  1. Richard Kilvington    13
  2. Thomas Bradwardine    18
  3. William Heytesbury    20
  4. The Anonymous Author of the De sex inconvenientibus    22
  5. John Dumbleton    29
  6. Richard Swineshead    31
  Chapter II: Theories of Local Motion before the Oxford Calculators (Elżbieta Jung)    37
  1. Aristotle’s “Mathematical Physics”    37
  2. Theories of Motion in Arabic Medieval Philosophy    43
  3. The English Tradition in Mathematical Natural Science    50
  Chapter III: Oxford Calculators on Local Motion (Elżbieta Jung, Robert Podkoński)    57
  1. Richard Kilvington’s Theory of Local Motion    57
  1.1. Motion with respect to its Causes    58
  1.1.1. An Excess of Acting Power over Resistance – the Condition Necessary for Motion    59
  1.1.2. Inalienable Conditions of Motion    61
  1.1.2a. How to “Measure” an Active Power?    63
  1.1.2b. How to “Measure” a Passive Power?    65
  1.1.3. The Result of Action of Powers – Speed of Motion    67
  1.2. Motion with respect to its Effect – the Distances Traversed and Time    79
  2. Thomas Bradwardine’s Treatise on Local Motion    82
  3. William Heytesbury’s Contribution to the Oxford Calculators’ Science of Local Motion    87
  4. The Theory of Motion in the Anonymous Treatise: De sex inconvenientibus    93
  4.1. The Causes of Accelerated Motion    99
  4.2. The Motion of a Sphere     101
  4.3. The Mean Speed Theorem    104
  5. John Dumbleton on Local Motion    112
  5.1. The Mean Speed Theorem    124
  6. Richard Swineshead’s Speculative Science of Local Motion    125
  Chapter IV: Towards Modern Mechanics? (Elżbieta Jung, Robert Podkoński)    159
  The Novelty of Medieval Mechanics vis-à-vis Aristotelian and Galileian Theories…    184
  Editions    189
  Introduction (Elżbieta Jung, Joanna Papiernik, Robert Podkoński)    191
  1. Richard Kilvington’s Question Utrum potentia motoris excedit potentiam rei motae from His Quaestiones super libros Physicorum    192
  2. The Section De motu locali of William Heytesbury’s Regulae solvendi sphismata    193
  3. The Question Utrum in motu locali sit in certa servanda velocitas from the Anonymous Treatise de sex inconvenientibus     201
  4. Selected Fragments of Part III: De motu locali of John Dumbleton’s Summa logicae et philosophiae naturalis    204
  5. Presentation of the Texts – Editorial Rules, the Contents of apparati critici, and Abbreviations Used    207
  5.1. Richard Kilvington, Utrum in omni motu potentia motoris excedit potentiam rei motae    208
  5.2. William Heytesbury, De motu locali    209
  5.3. Anonymous, Utrum in motu locali sit certa servanda velocitas    210
  5.4. John Dumbleton, De motu locali    210
  Ricardus Kilvington, Utrum in omni motu potentia motoris excedit potentiam rei motae, Elżbieta Jung (ed.)    213
  Guilelmus Heytesbury, De motu locali, Elżbieta Jung, Robert Podkoński (eds)    267
  Anonimus, Utrum in motu locali sit certa servanda velocitas, Joanna Papiernik (ed.)    297
  Johannes Dumbleton, De motu locali, Elżbieta Jung, Robert Podkoński (eds)    391
  Bibliography     427
  Index of Names    447
  Summary    451
W celu zapewnienia wysokiej jakości świadczonych przez nas usług, nasz portal internetowy wykorzystuje informacje przechowywane w przeglądarce internetowej w formie tzw. „cookies”. Poruszając się po naszej stronie internetowej wyrażasz zgodę na wykorzystywanie przez nas „cookies”. Informacje o przechowywaniu „cookies”, warunkach ich przechowywania i uzyskiwania dostępu do nich znajdują się w Regulaminie.

Nie pokazuj więcej tego powiadomienia